AD-A169 929 SOR (SUCCESSIVE OVER-RELAXATION) MGR (MULTIGRID
ﬂLGO THH)(NU) EXPERINENT. . <U) MWISCONSIN UNIV-MADISON
COMPUTER SCIENCES D KANOWITZ JAN 86
UNCLRSSIFIED RFOSR-TR 86-0411 AFOSR-82-0275 F/G 9/2

1

T

‘?nlmﬁfzak$

-

': .: [N -"v

Cowd

o o
[S

DNy LU

SN D

s P N e AR

NI

iy PE ne

=
12

== W e

3

C ng W ATy e

* nf ab bl

S m.t gk gt

f
R ——

- ‘ -
*"-"ff Y

e
oS
A)

ol‘

.
-

)

r‘;

ﬁ#51~;

-
-

K d

"d'f'/ M

AR,

- ow -

-

EECLUN

AD‘A 169 929 T DOCUMENTATION PAGE I

. A

UNCLASSIFIED

10. RESTRICTIVE MAARKINGS

2e. SECURITY CLASSIFICATION AUTHORITY

20. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited.

& PERFORMING ORGANIZATION REPOAT NUMBEA(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR. 3 6

7a. NAME OF MONITORING ORGANIZATION

6a. NAME OF PERFOAMING ORGANIZATION 0. OFFICE SYMBOL
University of Wiscansin (IF appticabie)

6c. ADORESS (City. State end ZIP Code)

Air Force Office of Scientific Research
7o. ADORESS (City, State end ZIP Code)

Directorate of Mathematical & Information %
/ .

8c. ADORESS (City. State end ZIP Code)
[ARRN
Bolling AFB DC 20332-6448

Madison, WI 53706 Sciences, Bolling AFB DC 20332-6448
Sa. NAME OF FUNDING/SPONSOAING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (11 applicebie) 82-0275
AFOSR NM - AFOSR-

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
61102F 2304 A%

11. TITLE (Inciude Security Classificst

SOR and MGR[V] Exper1ments on the Crystal Multicomputer

12. PERSONAL AUTHOR(S)
- David Kamow1tz

13a TYPE OF REPORT 13b. TIME GOVERED
Report . FROM - TO

14. OATE OF REPQRT (Yr., Mo.. Day) 18. PA?‘% COUNT

January 1986

16. SUPPLEMENTARY NOTATION

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessery end identify by Noek number) .
SAoue 3us. GA. 7 distributed computing, ..--- oy
[~.
multigrid ‘;..9{,, Lo « /

¢ oo

DTIC riLE COPY

the MGR[v] multigrid algorithm on the Crystal multicomputer.

19. ABSTRACT (Continue on reverse if necessery end identify by dlock number)

~This report describes distributed implementations of the red/black SOR algorithm and of

Rates of convergence and

observed efficiencies for both algorithms are compared.:J

t

- DTIC

ELECTE
JUL 2 4 1986

L D

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassirieo/uNLiMTED &1 same as rer. (0 oTic usens O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

Capt. John Thomas

220 TELEPHONE NUMBER
{Inciude Ares Code)

(202) 767-5026 NM
AR

22¢. OFFICE SYMBOL

DD FORM 1473, 83 APR

EOITION OF t JAN 73 1S OBSOLETE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

v

Ll et e SrL A A s M M ol /A~ S o AR N AR S e A~

AFOSR-TR- 86-0411

COMPUTER SCIENCES
DEPARTMENT
University of Wisconsin -
Madison

SOR AND MGR[v] EXPERIMENTS ON THE
CRYSTAL MULTICOMPUTER
by

David Kamowitz

Computer Sciences Technical Report #623

January 1986

SOR and MGR[v] Experiments on the Crystal Multicomputer*

by

David Kamowitz

ABSTRACT

This report describes distributed implementations of the red/black SOR algorithm and of the MGR(v]

multigrid algorithm on the Crystal multicomputer. Rates of convergence and observed efficiencies for both

algorithms are compared. Accesion For

NTIS CRA&I o
DTIC TAB O
Unannounced 0
Justification

By

Dist.ibation/

Availabitity Codes

T Avail :z;d/or

Dist Sp_cial

A-/

J—
Supported by the Air Force Office of Scientific Research under Contract No. AFOSR-82-0275 and by NSF
grant MCS-8105904.

AIRFORTICTF "E 0= IZIFNTTFIC RESEARCH (AFSC)
OTICZOF TR°¥NOMITTAL TODTIC
Dicteetnicl report K boenrevicewnd and is
aproved Tor nubiie rele e TANAFR 190-12.
Srroteibetien i unlimited.
"TTHEY J. KETTER
Chief, Technical Information Division

O PTATS

o ..
PRI

LARANS

R K} RO .""~
Nt T AT T S Nt

v e

R &0l

LA SN

‘.

by
AL NN

| LN N

."I""t

-
W~

WA A

*.
-
.
o'
)

1. Introduction

Various iterative methods, and multigrid in particular, are often used to solve the large linear systems
that arise from the solution of elliptic partial differential equations. This report describes an experimental
study underwahen 1o invesiizate the use of the Crysial distributed computing facility [1] to implement two of
these methods. The two methods chosen for study are the red/black Successive Over-relaxation (SOR)

niethod and the MGR{i-] multigrid algorithm.

Red/black SOR can be completely distributed to a number of machines and the algorithm itself is very
easy to implement, hence it is a good test algorithm. However p, the rate of convergence (contraction
number) for SOR is

p~1-ch
where ¢ is some constant independent of 4. This rate becomes abysmally slow as A-0. This slow rate sug-

gests the use of much faster, although significantly more complicated, algorithms such as multigrid.

The MGR[v| muingrid algorithm presents an added challenge beyond the details of the SOR algorithm.
On the one hand multigrid algorithms have rates of convergence which are bounded away from one by con-
stants independent of 2. In fact, for Poisson’s equauon n a square the asympiotic rate of convergence p(v)

of the two grid MGR([v'] algorithm sausfies

pay t 11 I2ll°2‘i &;‘ 1 as h-0.
This is clearly superior to the rate of convergence for the SOR algorithm. On the other hand achieving this

rate of convergence requires that much more work be performed. Indeed, from a distributed computing point

of view there i a stage of the multigrid algorithm which is performed sequentially.

One can reasonably ash: Given the Crystal distributed computing facilitv can the completely distribut-
able SOR algorithm be made faster than the MGR[v] algorithm? Before answering this question decisions
need 10 be made about the impiementation of both of these algorithms.

This report has the following organization: Section two describes the specific differential equation and

resulting hnear system that was actuallv solved. Secuon three describes the Crystal multicomputer and the

modificauons to the sequential algorithms that are necessarv for their implementation. Sections four and five

I
q

AR A TR S WIS TN R A oA [N R A e AT A R A A AL A A S A A A DR e ' LB R >N

b v u'.--

contain, respectively, details about the implementation and results for the SOR and for the MGR|[v] methods.

B Finally Section six contains some concluding remarks.

¥
4 A0

\

“. ‘
AR

Mar N
SN e

‘&

OO O MOSEN A

FAea)

g

Oal NS

Ve
LA AR S

[]

L AR SRS ek Rt Ad Dl SN Bt 'Bd e G e it a g S S N

RO A U A i s S 0 Bl A0 Gta Mrg S Bie gig iy jiy Bog aVe B rie d%e B B\ tie A0 tRR

2. The Problem

. The following analvtic problem was chosen for testing by the two methods of solution.

Find u(x,v) such that

- o G - Ofor oy e, Q2.1

L3

u(x,vy Ofor (x,v) o}

and (} = {(x,_v)(RE|O0<ax,v <1
Although the answer 10 this problem is obvious, 4 = 0, when studving iterative methods for the general Pois-
~on equation with Dirichlet boundary conditions this homogeneous probiem is the only problem which needs

1> be cunsidered

In general terms the method used to solve (2.1) is 1 discretize the region (2 intc ¢}, and then 10 use

~ither SOR ar mulugrid to solve the resulting linear system of equations.
The first step s 10 define €}, the grid used 1o approximate §). (), 15 constructed by first choosing N

(N dd), the number of poinis on a side of {);. and setting h, the mesh width, equal to NLT . Then

L {(x,,».)~ O | x - th, v B IR IS N].
For reasons that will become clearer later, §);, is divided into rwo subsets (R and (}# (R corresponds to ‘red’

points and B corresponds 10 *blach’ points). {1R and 2P are defined by

QOf = {(x,,y,)eu,,h—jz] mod 2]

and
Qp - [(1-,_\1,)4.(2;, li=i=0mod?2)
The linear system that arises from discreuzing (2.1) is, for all (x,,v,): 4,
h'f{ U - Uy 1= Uer = U=y, - 4Lf,‘,} - 0. 2.2)
with

U, Ofor: ON-1. 0N-I

e -
. -, PR R T Y . . T Tt et CI S U -

. ' . S T T R A A e S T e T T SR PR A - -y A e R > " -

A I I L G DI I BRI S . R S I T I S S S L SO I P G S AV, ‘.A‘!:.“!\:ﬁ:.\;\i';.‘nfh A laR AN, ‘;';\"\"_&": W

PR

R The notation U, , corresponds 10 U(x;,y,), etc. Since the right hand side of equation (2.2) is zero the 'hl?

o term is neglected. The system of linear equations (2.2) is written in matrix form as AU = 0, where U is the
A vector of unknowns corresponding to points in §};,. The solution to this system of equations, U, gives an

. approximation to u(x,y), the solution of (2.1), which is an O(A#2) approximation.

@ S ate o
a ey,

Cate el w

v*e’ s

tatl]

XX

L
Ly .

s'na a w ¥ T

A LN PP

&

INYY IR N

3. Brief overview of Crystal

The Crystal multicomputer is compeosed of a network of VAX 750 computers, each of which can com-
municate with each other. Communication between machines is accomplished by means of messages. This

report does not describe the technical details of the message transfers; [1] and {2] describe these details.

However, from an algorithm design viewpoint a number of details are important. Each message can
consist of up to 512 words (2048 byes) of information. Once a machine sends a message it is free to proceed
with new work. On the receiving end, the messages are placed in a buffer until they are read by the receiv-
ing machine. If no message has arrived when the receiving machine is ready for one then it must wait for a
message 10 arrive. The ratio of transmission time of messages to computational time (multiplications etc.) is
large, thus it is 1o an algorithm’s advantage to do as many computations as possible between sending a mes-

sage and waiting for a response. Otherwise the machine must busy wait for a message o arrive.

Connected 10 the Crystal multicomputer are a number of VAX 780 computers, referred to as hosts.
The individual machines in the network of VAX 750 computers are referred to as node machines. To run a
particular experiment the experimenter is able 1o communicate with the node machines from the host
machines. For example, in this application the problem size and other parameters are sent to the node
machines which then proceed to solve the probiem, either by the red/black SOR algorithm or by the MGR[v]
algorithm. One particular node machine, for this application, is called the master node and the other nodes
are called siave nodes. The master node communicates with the host machines and takes care of various

bookheeping tashs, such as timing the algorithm.

3.1. Implementation on Crystal

The basic idea used to solve the discrete problem (2.2) on Crystal is to decompose the region {};, into a
number of smaller regions {}4 and 10 assign each region {14 to a different processor k. The decomposition of
{2, 1s accomplished by choosing the number of machines to use, M, and then splitting (), into horizontal

strips each of height 1/M. Thus, {1, - Q4 (QF (4 - U M where

- 'Y - 1. -

LI T WYY YL TS A R T AR

lelaie, < -

N 1 3P

0f = {(x,,,v,) fay | kgt

Figure | shows, for N = 7and M = 3, (}¢, corresponding to machine & for & = 1, 2, 3.

machine |

machine 2

machine 3

Note that the number of points per processor does not have to be the same. In addition in our implementa-

non an odd number of machines is required 1o insure that inter-machine boundaries do not lie on grid points.

3.2. Data Flow

One can apply the concept of data flow, see [3] for example, to study our particular implementation of
each iteration of the red/black SOR algorithm on Crystal. The data flow concept involves examining what

unknowns are actually being determined and what is the flow of data through the processors.

For our problem it is important to realize that the only true unknowns are those points lying on
machine boundaries. Once these points are fixed then the points in the interior of {14, for each iteration, are
determined by the iteration process itself. In the eventual solution of (2.2) these interior points are deter-
mined by the uniqueness of the solution, which is implied by the maximum principle. Therefore the object
of our parallel algorithm is to determine the values for these points. From this point of view the role of the

points lying inside each {1/ is solely 10 update these boundary values.

The task of each machine is thus to input boundarv data and then to output updated vaiues. Each
machine proceeds independently and can be viewed as a single instruction —update boundary values. These
computational processes are triggered solely by the flow of data through the network. There is no global syn-

chronization or control over the algorithm with the excepuon of staring and stopping.

An important advaniage in looking at the algorithm in this light is that the particular algorithm is

independent of the architecture it is programmed m. For example the only change necessary in moving from

-
Y the distributed Crystal networh 10 a shared memory machine is that rather than physically transferring boun-
.
p dary \alues one would only have 10 mark the boundary rows as being free for the next machine to update.
;
Of course, for each machine the interior points serve as an initial guess for the next iteration. This has
<4
‘ the practical implication that after the first iteration the machines are no longer interchangeable over ().
.
)
f
N

Dt
P

LA
-3

b
»
h‘

3

f‘)‘_

;.’-"u's\‘-'

A_A ¥

7.

R
~

4. The SOR Method

The successive over-relaxation, SOR, method has been studied bv many authors, see [4,5,6]. The
red/blach SOR method is characterized by its use of the decomposiuon of ¢}, ino (2R and (1B, Although
red/black line SOR (SLOR) also conveniently lends itself to the Crysual architecture, red/black point SOR is
used instead since the decomposition of (2 into ()£ and into 24 is also necessary for the MGR[v] algorithm
described in ~ection five. This allows us o compare two methods for the solution of (2.2) based on the ~ame

basic iterative scheme. 1n 7] the red/black ~phtting 1< applied 1o vector processors.

The iterative scheme for our problem, for a given value of w and initial guess UY, is:
Repeat for each &, & =1, 2, 3, --- untl convergence;
First update points in {}R:

For all (x,,y,) ¢ (R, set

Urk,jl T w {Ur‘— | Ulk.j'l - UIL,.,"I - Ulk‘i,_l] 4 - (l_w)U,Ah/'
Then update points in 2B:

For all (x;,v,) + 1P, set

Ukiii= w {U‘_ 1= Ukyey = Uboy = Uk, ’ 4 - (I-w)lp,.
Note that while updating points in §}f, U | ,, Ur,-1, Uf,. 1 and Uk 1, are all in 0B; similarly
the reverse is true while updating points in (1.
The algorithm 15 completely described by the above description except for the choice of w. For
0 < w < 2 the SOR algorithm converges [4]. In addition, for our problem the optimal w is given by

. 2
Wopnmal -~ T T
1= [1 - g

where p i1s the largest eigenvalue of the Jacobi iteration matrix. For general problems the value of u is not

known and an iterative procedure must be used to determine wpnmar. However, in this case it is known that

M COSTA.
In addition. for «v 4 pu . the rate of convergence of the red/black SOR method 1s
8

~ M AARCN RN SN AR AN P AR N i e g el i A S o

PO et — 1= 1 - S_ﬁlrn'gh]
e 1 - sinwh

4.1. Implementation on Crystal

We have already secn that the basic idea used to exploit the Crystal architecture is the concept of
domain decomposition. What is the interaction between machines in terms of the SOR iteration? What is the

best reorganization of the algorithm to minimize the effects of the decomposition?

Eich point U, that is updated using the SOR algorithm depends only upon its four nearest neighbors.
For points interior to a given region (/4 these four neighbors lie completely within (4. However for boun-
darv points of €2/ (either the top or the botiom row) one of the neighbors lies in either 24~ (points along
the top of ©24) or in {121 (points along the bonom). Before each iteration machine & must therefore receive
these boundary values from machines «—1 and i —1. Similarly machine & must send its boundary values to
its twe neighboring machines. Machines | and M have only one neighboring machine each, therefore there

1s only one boundary transfer for these two machines.

In order 1o *‘hide’" the message transfers rather then <ending boundary data and then waiting idlv for
the boundaries 1o arrive from neighboring machines, the interior points are first updated. Then, the points
along the boundarv of {12 are updated after receiving the boundary points from machines x =1 and é-1. In
this wav we hope that the time required to update the interior points will be larger than the time required for

the boundaries to arrive; otherwise we must busyv wait for them.

This procedure requires that rows in the original domain {}; that are boundaries of partitions (14 be
represented twice. For example, the top row of {24 1s updated by machine 4 and is also the bortom row, and

hence used as beundary data, in machine & ~1.

The decompesiion of €1, nte ‘red’” points and ‘black’ points aliows machine ¢ to work simultaneously
with the other machines. Since the ‘red’ points depend upon values fixed in the ‘black’ points, we have
already seen that ail the ‘red” points can be updated simultaneously. The only sharing of informauon is the
values of “black’ points along machine boundaries. Similarly, 1o update the *black’ points, the ‘red’ points

are held fixed, and again onlv the points alonyg machine boundaries need to be exchanged.

L Tt et et S e e e e tetr o™ - R T T TR
< B .

L T e A PR N T S S TR, R R A U SO e Pt S
U VIV PV UV TV T Y U W VR DT VT TG T T T 1 G U0 I YR VR W VO RS W VR N 1

A
g

Y

4

i
'_ In the case of lexicographical SOR, to update a given point, say U, ,, points U,-1,, and U, - must

be updated first. In particular, if the point U, ; is in machine &, all of the points in machine & —1 must be ‘

" first updated before updating U, ,. Similarly the points in machines k-2, & ~3, etc. must be updated before
«
A points in machine k~1. This loses the effect of distributing the computational work among a number of
oy machines. Hence, a global decomposition of), for example the red/black decomposition, is necessary for
'._

.: the Crystal implementauon 1o succeed. In addition, since only points along machine boundaries are shared,
o

::: one complete red.black cvcle requires only two message transfers.

- On Crystal the red/black SOR iteration for machine /, with N; rows of unknowns, is:
. Given w and U9:

2 Repeat for &k = 1,2, 5, - - until convergence:
.':, 1. Send boundary data to neighbors.

'.~_‘ 2. Compute new Uk*! at interior points, rows 2, - -+ Ny—~1.

- 3. Receive boundaries from machines /-1 and /~ 1.

4. Compute new Uk~ ! at boundary points of (}/.
5. If a complete red/black cycle has been performed, compute residual.
It 15 important 10 realize that the iterates computed by this distributed form of the red/blach SOR algo-

: rithm are exactly the same as the 1erates computed by the serial version of the red/black SOR algorithm.
-'. This allows us to easily compare the savings made by using the multicomputer.

g

) A number of specific details about the programming of the algorithm are of interest. To controi the
- various processors corresponding to each region {24 an additional processor is used. This additional proces-
_ sor collects the norms of the residuals from each machine k. The total norm over () is computed and sent
: 10 the host machine. In addition this machine provides each machine k& with the necessary starting informa-
,, tion (number of points, value of w) and signals convergence to each machine «.

. In order to heep the messages straight between machines, each message includes a synchronization
5 number from us sender. In addition, when the messages arrive at their destinations the originator of each
message 1+ hknown. For example, machine & working on iteration ! waits for messages sent from machines)
: 10

e e T e T e e s e e e T R . IR e L T et - R IR C .
e e Lt e et N T e T e e L e T e e e e e e e N e e e e e e e e
PAPAY T SR A I PRI, W SIS S RIS S S P S PG DI Sty Wy ST T VA U L T WA T, P S S S |

2 W I

r. e A

)
s 0%,

.
.

k-1 and k+1 each labeled with synchronization number /. In the implementation of the red/black SOR
algorithm this synchronization number corresponds to the iteration count of each machine. In case messages

arrive 100 soon, for example from iterauon /- I, then the messages are buffered until needed.

A final consideration concerning the implementation is worth noting. Although FORTRAN is available
on Crystal, the language Wisconsin Modula is used insiead. This choice is made to facilitate the buffering of
the messages and because of Modula’s superior choice of data structures. Since we are mainly interested in
speedup and efficiency for this mode! implementation the consideration of which language to use, while

important, does not change the conclusions based on the experimental results.

4.2. Experimental Results

The algorithm of the previous section was programmed and tested on the Crystal multicomputer. In
order 1o compare the distributed version of the algorithm to the serial (single machine) version of the algo-

rithm a number of definitions are required.

-Let T, be the time required 1o run the algorithm using p machines. Then the speedup, Sp, is

T
S, = T
P r
The efficiency, Ep, is
S;
= 2P K
E, D

For this particular distribution of the work per iteration among the p machines in use, the minimumn tume

required to run the algorithm is 7;7] , SO

hi:’

Hence, E, satisfies

_ S _ T
E= % = o=l

One hopes for E, to be as close to one as possible, however as we will see this 1s not always possible.
To measure the time required by the algorithm, the additional node which collected the norms from

each piece timed the algorithm. By using a Crystal node machine to collect the times no allowances had to be

11

T S T L T T K I A W I R i i ¥ O O =W - O~ o

made for other users on the system. As an additional measure 10 insure accuracy three runs were made for
every choice of N displayed in the tables. The deviation in time between runs was very small which supports
the result that all of the measured time was due to the computations and not due to network traffic or other

extraneous factors.

Runs were made with N equal to 15, 31, 63 and 127. This corresponds to 225, 961, 3969 and 16129
unknowns respectively. This may appear to be an unreasonable number of variables, however when using a
larger or more complicated domain (1 these are realistic sized problems. In addition to varying N, the

number of processors p equaled one, three, five, seven, nine and eleven.

Tables 1 through 1V conuin the results for N = 15, 31, 63 and 127 respectively. The column labeled
maximum number of rows shows the number of rows in the largest division of {};,. Recall that the number
of rows per machine is not required to be the same. The machine with the largest number of rows dominates

the computation so it is important to compare the results for this machine.

{ Number ‘Maximum

{ of number of Average - Speedup Efficiency

L Machines Rows Time

| 1 15 9.55 1.00 1.00

T 3 5 7.28 1.31 0.44

! S 3 6.80 1.40 0.28

; 7 3 6.73 1.42 0.20

’ 9 2 6.28 1.52 0.17

L 11 2 6.16 1.55 0.14
Tablel -N = 15

' Number T Maximum

i of number of Average Speedup Efficiency

__ Machines Rows Time

! 1 31 57.41 1.00 1.00

! 3 g 26.51 2.17 0.72

i 5 7 19.49 2.95 0.59

' 7 5 16.07 3.57 0.51

| 9 4 14.33 401 0.45

S 3 12.68 4.53 0.41

Table Il - N = 31

12
-h - R - r - d - - LML - - . .
. .‘\'_«Jxx.a. x_L'..s u. \._L.(, LR \. ‘. 1. Ny sL\‘Ln. 1.._5." -A‘_LI_\.'_\‘ VL RO OO POV 1-‘_\-- ig-;. a _[‘.A Y .J

)
4
o
W
¥ J—
K Number Maximum
& of number of Average Speedup Efficiency
Machines Rows Time . .
Y 1 63 44]1.99 1.00 1.00
;\ 3 21 160.84 2.75 0.92
R 5 13 105.07 4.21 0.84
N 7 9 77.20 5.73 0.82
“ 9 7 63.19 6.99 0.78
) L 11 6 . 56.34 7.85 0.71
N Table III - N = 63
\|
N
~
N
Number Maximum
) of number of Average Speedup Efficiency
. i Machines Rows Time
- { 1 127 3675.56 1.00 1.00
. |' 3 43 1281.80 2.87 0.96
‘s ! 5 26 790.26 4.65 0.93
. ! 7 19 587.58 6.26 0.89
j 9 15 471.73 7.79 0.87
’.: ! i 12 385.25 9.54 0.87
" Table IV - N = 127
. Figure 2 contains a plot of the speedup versus number of machines, while Figure 3 displays the effi-
:Z ciency versus number of machines. As can readilv be seen, for large problems the results are very encourag-
A
. ing. Indeed for N = 127 the algorithm remains over 85% efficient. This indicates that the message transfer
-~ time is successfully dominated by the time required for computations. However, for small problems the effi-
:'_': ciency rapidly drops off, which indicates that this form of distributing the algorithm is not worthwhile for
5 small problems.
-
£
by
‘l
-
v 13

Speedup s,
11.00 '1 "" eal

1000 e R R LR R P LT ST EEE SR PPRREE
127x127
Q 0 A----rrmmrmrmmremm et g

8.00 -l 63;63

T OO A T
600 e £ U
S.00 4 g e
31x31
4,00 e S AT
3_00J ..
200.‘ e e e e e e v mmeeame e amama et e ae e i amm e

15x15
1.00 ..

O_OO T T L 7 L B

1 3 5 7 9 11 13
Number of Machines

Figure 2

14

.
-

e T e e e T e T e e et e e Y -~ e T m NN
VARSI TIS IS TR G VOO R AR PR AT, N AT, W G AR A, R AR LY A SE SRS

“
p Efficiency E,
. 100 ...
. 090 0 N
. 127x127
) 0.80 T
l 63x63
> 0‘70 e
060 B R e e T
X R
) 0.40 4o N\t 31x31
; .30 A -rmrmrmmmmm e e e e
0.20 - g
. 15x15
: 0. 10 L T P
; 0.00 T T T - - —_
: 1 3 5 7 9 il 13
- L Number of Machines
.

Figure 3

e L, T e T et e T
ISPPSIG Y P s, DU L N I PR T Y

A A e Ne A A Sl A iad i S i AU S GV U N s arul a0 N g A Lt o SRt (i AR R AR 20r & A - at et bl el g et it At
i - 3 M " R g Y. AL AL N oA it ol g i e e

)
R
2
5. The Multigrid Method

v The multigrid algorithm for the solution of (2.1) has been studied by many authors, see {8,9,10, 11} ’

: Multigrid is a term used to describe an iterative technique which uses auxiliary grids which usually have sig-
i nificantly fewer points than the original grid. We will not attempt to describe all multigrid algorithms here,
: but rather will describe the one algorithm implemented on the Crystal multicomputer.

:. The algorithm chosen for implementation is known as the MGR([v] algorithm. This algorithm was first
: describéd by Braess |12] (algorithm 2.1 in his paper) who analyzed the two grid version of what became
known as MGR[0] for the Poisson equation in a general polygonal domain. Ries, Trouenberg and Winter
‘-:' [13) later analvzed the aigorithm for the Poisson equation in a square for arbitrary v. Their results agree
' with the result of Braess for the case v = 0. Kamowitz and Parter [14)] extended the previous results for rwo
- grids for the MGR|0] case to the variable coefficient diffusion equation in a general polygona! domain. And
finally Parter [15) extended the results of Ries Trottenberg and Winter and of Braess. He proved that the
three grid rate of convergence in a general polygonal domain for MGR{0] for the variable coefficient diffu-
_.f sion equation is the same as the rate, p = %*O(h), for the two grid algorithm.

2 | 5.1. The MGR[v] Algorithm

3 In order to completely describe the MGR[v] algorithm a number of spaces, operators and parameters
need to be defined. In brief, each multigrid iteration consists of a small number of smoothing iterations, the
v transfer of the residual to a coarser grid, the solution of a related system of equations to compute the ‘“coarse

- grid correction’’ and the updating of the smoothed values in the original, fine, grid by interpolating the
E coarse grid correction 10 the fine space. It should be noted that the multigrid algorithm itseif can be used
': recursively fo compute the coarse grid correction; this leads to a true multigrid algorithm. Also, additional

smoothing steps can be done 1o the coarse grid correction while interpolating to finer grids.

First the general MGR([v} multigrid algorithm will be presented, then the details concerning each stage
of the algorithm will be described. In terms of the implementation on Crystal only a rudimentary understand-

ing of the algorithm is necessary. However the details are imporant in terms of the actual performance on

DO e et)

16

R A i okl Bl B

X ‘¢.:.-’.~ ',-.;-\'-: e d et

R I T T N T I S S NP ST L S L T « .
gl AT \-.\-.“- L L e S A A ST .’.' RN LTt T .
h » .

Crysual.

The MGR[v] algorithm uses : nested grids, where 1 is selected in advance of running the

The nested sequ:nce of grids is labeled (}) D $)2 D ... (), where {1, corresponds t0 (), of section

ated with each grid {); is a positive definite, symmetric operator

Ly oy - Q.

algorithm.

2. Associ-

To solve LU, = f1, where L is the linear operator defined in equation (2.2) and f is O for our par-

ticular problem the following algorithm is used.

Set k := 1, U := initial guess.

Algorithm MG(L,, Uy, fi, &);

(Ly given positive definite symmetric operator,
U, given initial guess, returns value at nexi iteration,
fi right hand side,
Ak grid layer)

Smoots. Perform v iterations of odd/even Gauss-Seidel relaxation on the problem L, Uy = f; followed

bv one odd sweep. Store the results of this step in Uy
Compute the Residual r; :

Setr @ fi-— LAUL

Note that at the odd points r, - 0.
Restrict the residual r to $), . ;:

Set fieq:= Ih-tir

Consider compuung the Coarse grid correcnion:

Find Uy.suchthat L, . Uk~ = fi-1.

If Ai=1 - 1 solve directlv (1.e. return U, = L, 1f,).

Otherwise, set Uy .} -~ 0 and return MG(Li ., Ui« 1, fi 1.k~ 1)

Interpolare and update U;

Set U, : = U& ~ It yU. .

17

™ - - .' P _-.'. ..‘.. .._.»7.'."»-‘_'. »
A A A NSRRI AT Sl S SN T R PO e :A_‘:J

Lad il ol B IR A s L,

]
"l
~l
~0
‘N (6) Return Uy, exit algorithm.
In the above description of algorithm MG(L. U, fi,k) the details of the operators Ly, I#~! and 4. ’
e
h were deliberately left out. Indeed, with the exception of {); which corresponds to 1, the spaces £},
f$ k =2,3, -+ t have not yet been defined.
! For clarity only the particulars for the two grid algorithm will be described fully. The details for the
i
At
' full 1 grid algorithm extend readily from the two grid description.
N
_:.
5.1.1. Additional Details of the MGR|v] Algorithm
f'.: Coarse Grid Spaces
Given N, recall the definition of (),
‘_'. s21 = ‘lh = (X’;_V_I)(!2 l X = lhv y] = Jhn] = l'.l = Nl}-
. Then the coarse grid spaces {);, / = 3,5, - - correspond to setting
1=/
. N,,ewl=2T[N1-1]—]
¢
-~ and computing ();. with 4 now equal 10 Ni]'—'T' The coarse grid spaces (), [= 2,4, -+ - correspond to0
o new
- the ‘‘black’’ points of {1,
.‘_ Communication between Spaces
_\E The interpolation operator I£. is constructed as follows:
. [Ié'-;U], , := U, if the point (x;,y,)¢ {2,
X and for (x,,y;) € 0 \{dx.) we require
. ’Lk l[t‘lul = 0. S.DH
]
Note that (5.1) results in an explicit equation for each point (x,,v,) ¢ {2 V..
For the restriction operator 14! we set
" ot g ()" (5.2)
.
Cal
18

- e e e

Lo

[

AR R P

P

Pl -{’A‘".

Iy
h

In step 3 of Algorithm MG applying the operator [f* ! to the residual reduces to dividing the residual by 2 on

points of (2, €2~

Coarse Grid Operators

As is well known [11] the ““ideal’’ choice for Ly is

Lioyi= I 1006y,
With this choice of L, - for the coarse grid operator the two grid MGR[v] algorithm converges in one step!

However, Li+) is a nine point operator as a straightforward calculation shows. In order to continue doing

odd/even relaxation on each of the coarser grid layers we require [k-l to be a five point operator.

More specifically, the stencil for Li+1 (k odd) is of the form

O O
VAN N /
L := O O O
k+1 i
O a
L O]

For the MGR|[v] algorithm we take L;. | to be the ‘‘nearest’’ five points in the stencil for Lisr. E.g., the

stencil for L+ 1 (k odd) is

o |

A
For k even, L;- | corresponds to Ly , where ' = 2< A. It should be noted that this choice of L. for even

numbered grid layers results in the rotated grids characteristic of the MGR(v] algorithm.

19

| SRR

PR

5.2. Implementing the MGR|v] Algorithm on Crystal

The MGR[v] algorithm of Section 5.1 was implemented on the Crystal multicomputer. Each grid
O,k =1,2,---,1is partitioned among p processors, just as for the red/black SOR algorithm of section 3.
Steps 1-3 and 5 of algorithm MG are local steps, while step 4 is a global step. By a local step we mean a step
of the algorithm where updating any particular point requires only the values of the four nearest neighboring
points. The coarse solve on (},, in step 4, is a global step since the values of the unknowns throughout all of
(), are required before the coarse grid correction can be computed. The purpose of this experimental study
on the Crystal multicomputer is to determine whether there is any combination of number of grid layers and
number of smoothing iterations (v) for which the distributed portions of the algorithm effectively mask the

deleterious effect of the global solution step.

As the number of grid lavers increases, one hopes that the effect of the global solution step on the effi-
ciency of the distributed algorithm should decrease. However, as we shall see, as the number of grid layers
increases, the amount of work per grid layer decreases across all machines, anq eventually there is a drop off
in the efficiency of diciributing the local steps across all the machines. For example, if the coarsest grid, (),
has only one point on 1t, then the global <olution step can be accomplished in one arithmetic operation.
Unfortunately, the local operations on {}, are divided among the p processors in use, which means in this

case that p— | processors are idie. The tables and graphs following this section illustrate this effect.

The details of the implementation of the local steps (smoothing, computing the residual, restricting to
coarser grids and interpolating t finer grids) are similar to the implementation of the red/black SOR algo-
rithm. That is, send boundary daw, update interior sections, receive boundaries from neighbors and then
update the boundary values. These local steps are repeated for each of the s grid layers in use. Unfor-
tunately as the number of grid layers increases, the number of points per grid layer decreases, and eventually
the communication time for each step of the algorithm on these coarser grids dominates the computational

time.

In addiuon to the focal steps of the algorithm the coarse grid correction of step 4, on the coarsest grid,

requires knowledge of the remaining unhnowns 1n all of {},. These unknowns are distributed among ail p

20

processors in use. For this step each machine sends its unhknowns to an additional, dedicated, node. This

rmaster node collects the unknowns from each of the :/qve nodes. These slave nodes correspond to the nodes
used by the red/black SOR algorithm and perform the local operations. Once each siave node has sent its
unknowns to this dedicated machine the coarse grid correction is computed u§ing Gaussian elimination. The
results of the coarse grid correction computed by the master node are then redistributed to each siave machine

and the algorithm continues.

Of coarse a more easily parallelizable algorithm, such as red/black SOR could have been used to solve
the coarse grid problem. This would have increased the observed efficiency of the experimental study. How-
ever, the cost would have been a slower running algorithm since for small sized problems (such as the coarse
grid correction when using a fair number of grids) gaussian elimination is faster. The question of what tech-

nique to use 1o solve the coarse grid equation requires further study.

The coarse grid correction step results in the most serious bottienech of the distributed version of the
algorithm. During this step each node must remain idle while the coarse grid correction is computed. If the
number of points in (), is large (e.g. if 1 = 2 or 3 for example), then this step dominates the computational
ume of the algorithm. However, for the special case when the coarsest grid contains only one point, this
transfer of unhnowns to the rmasier node is eliminated. For this special case the one node containing the

coarse grid (with only one point in it) computes the coarse grid correction itself.

In addition to the bottleneck resulting from the coarse grid correction, there is another load balancing
problem inherent in implementing the MGR|v] algorithm on Crystal. As the grids get coarser eventually
there are more machines in use than there are rows in the coarser grids. This results in the situation where
some of the machines have no work to do and hence must sit idle for some portion of the algorithm. From a
practical programming point of view this results in the added complication of keeping the machines synchron-

ized throughout the iteration.

5.3. Experimental Results

The MGR|v) algorithm as previously described was implemented and tested on the Crystal multicom-

puter. Tests were made with N = 15, 31, 63 and 127 and with v equal t0 0, 1 and 2. The number of

LN TN

s B
PP

+

processors p used to perform steps 1-3 and 5 of algorithm MG was equal to 1, 3, 5, 7, 9 and 11. With the
exception of the case p -1 and the case where (), has one point in it one additional processor was used to
compute the coarse grid correction. Thus, the total number of processors used when (), had more than one
point in it equaled 1, 4, 6, 8, 10 and 12. When (), had only one point, the number of processors used
equaled 1, 3, 5, 7, 9 and 11. Unfortunately due to physical constraints on the amount of memory in the
node machines some combinations of the above parameters could not be tested and these cases are noted in
the tables found in the appendix. Also, the single machine tests with N - 127 were run on a lightly loaded
VAX 750 (the same type of VAX as a node machine) running UNIX. By way of comparison a few runs
were made with N-—-63 on both the VAX running UNIX and on a node machine. The times from both

machines agreed to within a few seconds.

The purpose of our experimental study on the Crvstal architecture is to determine what the optimai
choice, if indeed there is one, of p and v are for a parncular size problem. To gain insight into this question
1t 1s worthwhile 10 look at both the observed rate of convergence and the distribution of computational work

berween the easily distributed steps of the algorithm and the coarse solve step.

The appendix contains the full set of observed CPU times and efficiencies for all the test problems. For
exposttory simplicity only the case N = 63 will be disct.<<ed in this section. This case contains the full range

of the parameters v and number of grids and 1s represer ‘auve of the other sized problems.

Figure 1 displays the observed rate of convergencs for N = 63 and for v = 0, 1 and 2. Note that for 2

-

and 3 grids the observed rate of convergence is indeed b unded above by the predicted rate of

However, for v = 1| and 2 there 1s very linle changs in the rate of convergence as the number of grids

increases. This is Iin some ways counter-intuitive and requires further theoretical investgation.

After observing the rate of convergence for each test case a crude count of the computational work of
the algorithm was made. Since only a rough esumate of the work 1s of interest, 1 **work unit”* was assigned
to each unknown at each step of the algorithm. For example, with 7 points on a grid, » “‘work units’’ were

counted during the smoothing step rather than 5n floaung point operauons which 1s formally more correct for

AP I S

NP R S g —

OISO e
LA o o 0.

one iteration of Gauss-Seidel smoothing. The computational work required for convergence for each sized

problem is proportional to the size of the problem.

Figure 2 displays a graph of the otal computational work for N = 63 and figure 3 displays a graph of
the ratio of work for the coarse solve step to the total computational work. Notice that the amount of work

being done in the coarse solve step falls off rapidly.

Figures 4-6 display graphs of the observed efficiency for v = 0, 1 and 2. Each line corresponds 1o a
different number of grid layers. The bottom line, representing the least efficient case displays the observed
efficiency for 2 grids, while the bold line displays the observed efficiency for the special case where (), con-
tains only one point. Recall that in this case the masier node does no work, so the number of processors used

1s ximply the number used for steps 1-3 and 5 of the algorithm.

As the number of grids used increases, the efficiency coalesces. This Is not surprising since beyond
using a small number of grid layers there is not much difference in the amount cf work being performed with

respect to the number of grids used (see figure 2).

Unfortunately from a distributed algorithm point of view as the number of machines increases the effi-
ciency drops off steadily. This particular implementation of the MGR[v] algorithm is caught in the bind of
either having too much work to do solving the coarse grid equations or having too little work to do on the
coarser grids while smoothing, computing the residual, etc. In addiuon, having to wait idly for the coarse
grid equations to be computed is another limiting factor in terms of increasing the efficiency of the algorithm.
In the special case where (), has one point, this problem is somewhat alleviated, as can be seen in figures 3-
5. Yet, as the number of machines increases, even 1n this case the amount of work remaining to be distri-

buted among the processors is 0o small to effectivelv use them al} efficiently.

| .
A

o
.

)

[] A
[ACRENICNUL R

1.00 7

0.90 -+

0.80 A

0.70 +

0.40 7 o -

0.304

0207

0.10 v

Observed rate of convergence, N = 63

v=]lo--e¢- -0 —-——-o_—_--—-06--9—-06-——6-—0

MEPE St iaieh ik aliel aiuind shalnh clninh ahaind s

T L] ¥ il T L] L) T) L] L}

1 2 3 4 5 6 7 8 9 10 11
Number of grids

Figure !

—— MGR[1]

o--+MGR[2]

Number of Grids

CAME A S S At AE et Ak Ak Sk Sl Al Al And Al Mafiuf Andl Aafb Aalitd MRARS e A

Percent Of Work Done In Coarse Solve - N = 63
100 B R T LR PP PP
o— —o MGR(0}

1 2 3 4 5 6 7 8 9 10 11
Number of Grids

Figure 3

26

Efficiency, N = 63,v =0

1.00 1
0.90 -
.80 A4k

; 0.70 4

0.60

0.50 9~y 2 grids\‘ \\\' S e e T %

\ \ S~ RN
- N \ \ ~
040 _)l-)(3 g”ds R L\\\\V
& -—-8 4 grids X \\ S
S~ S~
0.304-5oTnognds B SO =
’ ® - -8 6 arids A
A\ S .
. \ N
& - -8 7 grids \ %
0204 - b g TS LI EIRRRPEE
-~ 8§ grids S~ ok P
S~ %
o—- 9 grids D

S L R ST -~
01071752 a 19 grids

o—e || grids - (1, has one point.

T T T v t i T 1 L) L L] il

1 2 3 4 s 6 7 8 9 10 11 12
Number of Machines

s TR IRTS

Figure 4

27

.

At

TRAIERIEFY K5 IS

“NAER RPEAD

-

RO

ey

[y
AN RN

LA

)
o

W'l

‘I .’ il

.n '.l ‘.
.

-\-‘.:-'.’.

ol

«
IR N .

1.004

0.90 -

\\\
0.80 7 -\

0.70 -+

0.60 A1

0.50 A

0.20 A1

0.10 v

o--0]0 grids

o—o|] grids

Efficiency, N = 63, v=

- {), has one point.

T L L]

I 2 3

T L) L] L] i

4 5 6 7 8
Number of Machines

Figure S

28

DMENAREARSE &)

|

1.00 1

0.90 A

0.80 v

0.70

0.40 1

0.30 1

0.20 1

0.10 1

®--® 7 grids \
................. ceeneees .,‘,....»._.._4\.;__........\&.\..;,...A.,.........,. R
*--° 8 grids T~ ~~-
*\ *_\\‘*
*-—e 9 orids T
................... P LR L LR AR AR Ty
6---010 grids
e——] grids - 12, has one point.
T L J . 1 L] v Ll T L v 1

1 2 3

4 5 6 7 8 9 10 11 12
Number of Machines

Figure 6

29

y"'.‘

"al

AN

WA

]
4 s

aa_r,

o SR 2 DCE

PO

Cl
o
.
-
.

6. Concluding remarks

Two approaches were presented for solving problem (2.2). The first approach, red/black SOR, was
easy to implement on the Crystal architecture and the experimental results in terms of the observed efficiency

for this algorithm were very encouraging.

The second approach, the MGR[v] algorithm, was much more difficult 1o implement on the Crystal
architecture. Alas, this particular implementation did not succeed in terms of high efficiency. Indeed this

lack of high efficiency appears to be inherent in the algorithm itself.

There is one important saving grace in the MGR[v] algorithm. While it might not lend itself to a distri-
buted implementation, even the serial version is much faster than the red/black SOR algorithm. Withv = 1,
and the appropriate number of grids (depending upon N), the MGR|v] algorithm was up to seventeen times
faster than the serial version of the red/black SOR algorithm. In practical terms, this means that for a 100%
efficient parallel implementation of the red/black SOR aigorithm to be competitive with the MGR{v] algorithm

at least seventeen machines must be used for every one machine used for the MGR|[v] algorithm.

6.1. Suggestions for further work.

A nomber of questions for further research have been opened by this study. The first question is what
happens 1= asynchronous smoothing is used? How much degradation in the rate of convergence of the
red/black SOR and the MGR[v} algorithms, if any, will there be? What kind of theoretical convergence
results ca: be expected? This approach has been looked at by a number of people, see [16, 17]; however no

clear answer has emerged.

Ancther question that would perhaps improve the efficiency of the MGR[v] algorithm is: Is there some
way to work on more than one grid layer at a ume? For instance, perhaps by staggering the iterations among
the grid levels each machine could work on a different grid layer, or perhaps even on more than one level.
This idea has been investigated by Greenbaum |18]. Alternatively, is there some way for some of the idle

machines to perform useful work while waiting for the solution of the coarse grid equations?

30

Finally, is it worthwhile to use a parallel technique for the solution on the coarsest grid? As stated ear-

- lier, this would increase the efficiency of the algorithm while perhaps resulting in some overall slowdown in

the time required to converge, at least for the serial version.

Q)
AP
[’
[
.
D
'
'
D
[}
3
.
"
D
s,
1
[’

o,

\'.
]
Appendix
.
‘ Tables 1-4 display the observed rate of convergence and the number of iterations required for each test
N, problem. In wbles 5-9, a-c can be found the observed CPU time for each test problem. 5a corresponds to N
e,
= 15, v = 0, 5b corresponds to N = 15, v =1, etc. The efficiency for each test case is displayed in tables
Y
) 9-12, a-c. Finally, table 13 contains the observed efficiency for the special case where (1, contains one point.
f: Observed rate of convergence / Number of iterations
a Number
. of v=0 r=1 v=2
gl grids
- 2 .4628 / 10 .06154 /3 .03228/3
", 3 .4639 /10 .06221 /3 .032771/3
¥l 4 .5964 /13 .06396 / 4 .03357/3
5 .5984 /12 .06133/ 4 .03402/ 3
6 .6633 /15 .06133/ 4 .03409 /3
7 .6474 / 13 .06086 / 4 .03412 /3
y Table1 -N =15
. Observed rate of convergence / Number of iterations
- Number }
. of v=0 v=] v=2 I
. | grids :
) 2 4585/ 9 .06582 / 3 .03546 /3 ‘
) 3 .4591 /9 .06583 /3 .03564 /3
" 4 .5909 /12 .06667 / 3 .03641/3
. 5 .5931 /12 .06585/ 3 .03645/3
. 6 .6950/ 15 .06513/3 .03653 /3
7 6971/ 15 .06483 /3 .03685/3
. 8 .7457 /18 .06483/ 3 .03685 / 3
- 9 .7308 /16 .06493/ 3 .03688 / 3
A Table 2 - N = 31
.
>

32

T N LN
&"L{L{L{A“‘(‘L

Observed rate of convergence / Number of iterations

’ ’ Number
3 of v=0 v=1 v=2
grids
2 .4583/9 .06711 /3 .03656 /3
3 .4586 /9 .06708 / 3 .03660/ 3
4 .5879/ 11 .06791 /3 .03741/ 3
5 .5889 /11 06757 /3 .03743 /3
. 6 .6912/ 14 .06661 /3 .03750/ 3
v, 7 , .6920/ 14 .06649 / 3 .03757/3
. 8 ! .7619 /17 .06647 / 3 .03762 /3
) 9 ! .7590/ 16 .06648 / 3 .03769/ 3
10 | .7980 / 19 06648 / 3 .03769 / 3
' 11 1 7798 / 17 06651 /3 .03770/ 3
. Table 3-N = 63
g Observed rate of convergence / Number of iterations
g Number
i of r=0 r=1 v=2
. grids
> 2 na' na na
3 na na na
4 .5879 /11 .06844 / 3 .03781/3
5 .5884 /11 .06828 / 3 .03782/3
6 .6887 / 13 ! .06723 / 3 .03790/ 3
7 .6890 /13 .06718 /3 .03793/3
8 .7590 7 16 067127/ 2 .03799/ 3
9 .7587 / 16 067137/ - .03801 /3
10 .8049 / 18 06716/ ¢ .03803/ 3
11 .7993 /17 06717/ 3 .03805/ 3
3 12 .8301 / 17 : 06717/ 2 .03805 / 3
5 13 8123/ 18 06718 / - .03805/ 3

Tabte 4 - N = 127

s 8 2 0 8 M D

"na means that this particular run could not be performed; usually due to size constraints.

33

.....

Observed solution time - N = 15

v=0
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 6.37 5.08 4.63 4.75 4.78 4.82
3 7.09 5.99 4.55 4.52 4.65 4.32
4 9.41 7.26 6.57 6.54 6.48 6.30
5 9.15 7.79 6.59 6.61 6.42 6.22
6 11.64 10.76 9.58 9.55 9.26 9.14
7 10.29 9.88 8.85 8.78 8.51 8.47

Table 5a

Observed solution time - N = 15

v=1]

Number
of

1
machine

3
machines

5
machines

5
machines

9
machines

11
machines

~N > W bW

2.69
2.89
3.85
4.05
4.13
4.21

2.10
2.07
3.19
3.75
4.26
4.60

1.97
1.88
2.89
2.90
3.85
4.19

2.03
1.87
2.87
3.24
3.80
4.14

2.07
1.89
2.87
3.20
3.79

2.10
1.79
2.81
3.25
3.72
4.10

Observed solution time - N

Table 5b

15

4.11

v=2
Number 1 3 5 7 T G 11
of machine machines machines machines ‘ machines machines
Grids i
2 3.00 2.26 2.16 2.19 2.21 2.24
3 3.43 2.55 2.31 2.27 226 2.20
4 3.54 3.15 2.81 2.76 1 2.76 2.71
S 3.74 3.66 2.81 3120 3.19 3.15
6 3.82 4.19 3.84 3.79 s 3.78 3.72
7 3.89 4.59 4.22 422 4.16 4.14

Table 5S¢

TR LTSS TR LN Y

QObserved solution time - N = 31

35

v 0
| Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 343 25.8 24.0 23.1 22.8 22.5
3 30.9 18.1 14.4 14.2 13.6 13.2
4 36.5 18.1 14.0 12.4 11.6 10.7
5 37.4 18.7 14.2 12.5 11.5 10.4
6 46.9 24 .4 18.7 16.4 15.2 13.8
7 47.5 25.4 19.5 17.1 15.7 14.4
8 57.2 31.9 25.0 22.2 20.3 19.0
9 Si.1 29.0 22.8 20.2 18.6 17.4
;- Table 6a
-
g Observed solution time - N = 31
v=1
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 17.8 13.9 18.2 12.9 12.7 12.7
3 14.8 8.6 7.6 7.1 6.9 6.8
4 12.4 6.1 4.7 4.2 3.9 3.6
S 12.6 6.6 4.8 4.4 4.1 3.7
6 ‘ 12.6 6.9 5.0 4.8 4.5 4.1
7 P12.8 7.4 5.4 5.1 4.7 4.4
8 12.8 7.6 6.1 5.5 5.1 4.8
9 12.9 7.9 6.4 5.7 5.3 5.1
Table 6b
Observed solution ime - N = 3]
v=2
Number l 1 3 5 7 9 11
of i machine machines machines machines machines machines
Grids |
2 } 19.1 14.3 13.4 13.1 12.9 12.9
3 ; 17.0 9.4 8.2 7.6 7.3 7.3
4 ‘ 15.0 7.6 5.8 5.1 4.7 4.4
5 } 15.4 8.1 5.8 5.6 5.1 4.8
6 15.5 8.7 6.4 6.1 5.6 5.3
7 15.7 9.2 6.9 6.6 6.1 5.7
8 , 15.8 9.9 7.9 7.2 6.7 6.3
9 I 1509 10.2 8.4 7.5 7.1 6.7 |
Table 6¢

553

THhS

L

N te

Observed solution time - N = 63

v=0
. Number] 3 5 7 9 11
' of machine machines machines machines machines machines
. Grids
E 259.3 na 211.9 208.2 206.3 207.8
\ 3 182.8 122.2 111.9 106.5 103.8 103.4
| 4 147.3 66.5 51.6 44.2 40.3 38.7
i 5 144.1 56.2 42.0 34.2 30.1 28.2
; 6 178.6 69.7 48.0 37.6 32.1 29.2
: 7 179.7 70.3 48.0 37.8 32.3 29.4
: 8 218.1 86.5 59.5 46.8 40.} 36.3
: 9 206.0 82.7 57.1 44.7 38.2 35.2
' 10 244 .6 99.5 69.3 54.8 47.0 43.0
P11 219.3 89.9 62.7 49.7 42.8 39.2
Table 7a
Observed solution time - N = 63
v=
| Number 1 3 5 7 9 11
! of machine machines machines machines machines machines
Grids
2 162.5 na 141.0 139.7 139.0 140.9
3 102.6 74.0 69.9 67.8 66.8 67.4
4 56.9 25.1 20.6 18.3 17.1 16.8
5 53.8 20.8 15.0 12.7 11.3 10.8
6 51.5 20.3 15.0 11.1 9.5 8.7
7 51.7 20.7 14.0 11.3 9.7 8.9
8 51.7 21.1 14.4 11.7 10.1 9.2
9 51.8 21 4 14.7 12.0 10.4 9.5
10 51.9 2i.8 15.3 12.5 10.8 9.9
11 22.2 15.6 12.6 11.0 10.3

52.0

Table 7b

WA N ar d

L LA R]

Observed solution time - N = 63
vo=2
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 167.7 na 142.0 140.5 140.0 141.4
3 111.5 76.3 71.4 69.0 67.9 68.3
4 67.1 27.7 22.4 19.8 18.4 17.9
5 68.0 25.4 17.9 14.3 12.8 12.2
6 63.0 25.3 17.8 13.6 11.9 10.9
7 63.4 259 17.6 14.3 12.4 11.3
' 8 63.5 26.4 18.0 14.9 12.9 11.9
9 63.7 27.0 18.5 15.3 13.2 12.3
10 63.8 27.5 19.3 15.8 13.8 12.8
11 63.9 27.9 19.9 16.3 14.2 13.5
Table 7c
Observed solution time - N = 127
r=0
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids)
2 na na na na na na
3 na na na na na na
. 4 781.0 na 324 .4 296.8 281.9 271.3
“ 5 697.3 na 2147 185.3 169.2 158.2
: 6 732.1 na 164.5 129 .4 109.3 95.8
] 7 730.4 na 156.7 119.7 98.7 84.3
i 8 890.8 na 188.7 143.5 117.1 99.2
| Q 8G60.2 na 188.8 143.8 117.4 99.1
" 10 1004.3 na na na 132.9 112.6
| 11 953.2 na na na 126.1] 106.8
} 12 1059.3 na na na na 121.2
13 1007.9 na na na na 115.5
Table 8a
37

Observed solution time - N = 127

v=1

Number
of
Grids

1
machine

3
machines

5
machines

7
machines

9
machines

11
machines

na
na

Table 8b

Observed solution time - N = 127

v=2

Number
of

Grids

|
machine

3
machines

5
machines

7
machines

9
machines

11
machines

—
QO W oo O L & LN

—
N —

Table 8c

AN I A Sl A g

39

E, -N =15
v-0
- _
Number 1 4 6 8] 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .32 .23 .17 .14 11
3 1.0 .29 .26 .19 .15 14
4 1.0 .32 .24 .18 .14 .13
5 1.0 .29 .23 18 | 14 12
L6 1.0 .27 .20 1s 13 11
Table 9a
E,-N =15
v=1
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .32 .23 7 13 .11
3 1.0 .35 .26 .19.15 .14
4 1.0 .30 .23 17 .14 A1
5 1.0 .27 .23 .16 13 .10
6 1.0 .24 .18 .14 .11 .09
Table 9b
E--N =15
y=2
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .33 .23 .18 .14 11
3 1.0 .34 .25 .19 .15 13
4 1.0 .28 .21 .16 .13 1
5 1.0 .26 .23 .15 .12 .10
6 1.0 .23 17 12 .10 .08
Table 9¢

I

v

220

ANOOSE

ALY~ AASrry

’
2.4,

L7,

Ve

E, -N =31
v=0
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .33 .24 .18 .15 .13
3 1.0 .43 .36 .27 .23 .19
4 1.0 .50 .43 .37 .32 .28
5 1.0 .50 .44 .38 .37 .30
6 1.0 .48 .42 .36 .31 .28
7 1.0 .47 .41 .35 .31 .28
8 1.0 .45 .38 .32 .28 25
Table 10a
E, -N =31
v=1)
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .32 .17 .18 .14 12
3 1.0 .43 .33 .26 .22 .18
4 1.0 .51 .43 .37 .32 .28
5 1.0 .48 .44 .36 231 .28
6 1.0 .46 .42 .33 .28 .26
7 1.0 .44 239 .32 .27 .24
8 1.0 .42 .35 .29 .25 .22
Table 10b
E, = 3]
v=2
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 34 .24 .18 .14 12
3 1.0 .45 .34 .28 .23 .19
4 1.0 .50 .43 .37 .32 .28
5 1.0 .47 .44 .34 .31 27
6 1.0 .44 .40 .32 .28 .25
7 1.0 .43 .38 .30 .26 .23
8 1.0 .40 .33 .27 .23 .21
Table 10c
40
“ylatet ."'w-.".ﬁ"\':\‘. -4 '.‘.*.‘-'.’;\" "h\’:\‘:\. SO e N

E, -N = 63

v =0
Number I 4 6 8 | 10 12
of machine machines machines machines machines machines
it Grids
t 2 1.0 na .20 .16 13 .10
3 1.0 .38 .28 .22 .18 .15
4 1.0 .56 .48 .42 .37 .32
S 1.0 .64 .58 .53 .48 .42
6 1.0 .64 .62 .60 .56 .51
: 7 1.0 .64 .63 .60 .56 .51
‘ 8 1.0 .64 .61 .59 .54 .50
l 9 1.0 .62 .60 .58 .54 .49
‘ 10 1.0 .62 .59 .56 J .52 .48
Table 11a
E, -N =63
v=1
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 na .19 .15 12 .09
3 1.0 .35 .24 .19 .15 .13
4 1.0 .57 .46 .39 .33 .28
5 1.0 .65 .60 .53 .48 .41
6 1.0 .64 © .58 .58 .54 .50
7 1.0 .62 .62 .57 .53 .49
8 1.0 .62 .60 .55 .51 .47
9 1.0 .61 .58 .54 .50 .46
] 10 1.0 .59 .57 .52 .48 .44
Table 11b
41

- -
L

S
o

b
E

~

~

\

‘

[ENICNEN

PR TN
.....

E, -N =63
v=2
" Number 1 4 6 8 10 12
of machine machines machines machines machines machines
| Grids
2 1.0 na .20 .15 .12 .10
3 1.0 .37 .26 .20 .16 .14
4 1.0 .61 .50 .42 .37 3
5 1.0 .67 .63 .60 .53 .49
6 1.0 .62 .59 .57 .53 .49
7 1.0 .62 .60 .55 51 .47
8 1.0 .60 .59 .53 .50 .45
9 1.0 .59 .58 .52 .49 .43
10 1.0 .58 .55 .51 .46 .41
Table 11c¢
Ep -N =127
v=0
Number] 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 1.0 na .40 .33 .28 .24
5 1.0 na .54 .47 .41 .37
6 1.0 na .74 71 .67 .63
7 1.0 na 78 .76 .74 .72
8 1.0 na .78 .78 .17 .75
9 1.0 na .78 77 .76 .75
10 1.0 na na na .76 .74
11 1.0 na na na .76 .74
12 1.0 na na na na .74
Table i2a
42
.‘.. LTI RSN

Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 1.0 na .33 .26 .22 .18
5 1.0 na .47 .39 .32 .28
6 1.0 na .74 71 .66 .61
7 1.0 na .75 .74 71 .70
8 1.0 na .75 .74 .72 .71
9 1.0 na .74 .73 71 .70
10 1.0 na na na .70 .69
11 1.0 na na na .70 .70
12 1.0 na na na na .68
Table 12b
Ep -N = 127
v=2
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 1.0 na .37 .29 .24 .20
5 1.0 na 51 .43 .36 .32
6 1.0 na .74 .73 .70 .66
7 1.0 na .75 .74 71 .70
8 1.0 na .74 .74 .71 .70
9 1.0 na .74 .73 .70 .69
10 1.0 na na na .70 .68
11 1.0 na na na .69 .67
12 1.0 na na na na 67 |
Table 12¢
43

VT TR AT T S T T
PAPR R IO S TR S P SR PRI S

- et e - W e) e e et I8 Ty A N N anh o u ¥y T VAL B SRl Sl Bob Aol Pl O D s Rt DY

“~% %'

N
~= Case {); has one point.
1 3 5 7 9 11
::- v machine machines machines machines machines - machines-
:f.' N = 15, 7 grids.
> 0 1.0 .35 .23 .17 .13 11
1 1.0 31 .20 .15 .11 .09
2 1.0 .28 .18 .13 .10 .09
e N = 31, 9 grids.
- 0 1.0 .59 45 36 31 27
- 1 1.0 .54 .40 .32 .27 .23
P 2 1.0 .52 .38 .30 .25 .22
By N = 63, 11 grids.
0 1.0 .81 .70 .63 .57 .51
- 1 1.0 .78 .67 .59 .53 .46
.’_:- 2 1.0 .76 .64 .56 .50 .43
- N = 127, 13 grids.
o 0 1.0 na na na na .79
1 1.0 na na na na .74
o 2 1.0 na na na na .72
A Table 13
,.
1
s
= 44

References

(29

(DS]

10.

R. Finkel, M. Solomon, D. DeWin, and L. Landweber, ‘‘The Charlotie Distributed Operating System:
Part IV of the first report on the Crystal project,’”” Technical Report 502, University of

Wisconsin-Madison Computer Sciences (July 1983).

D. DeWit, R. Finkel, and M. Solomon, **The CRYSTAL Multicomputer: Design and Implementation
Experience,”” Technical Report 553, University of Wisconsin-Madison Computer Sciences (September

1684).

D. P. O’Leary and G. W. Stewart, ‘‘Data-Flow Algorithms for Parallel Matrix Computtions,”” Com-

rmunications of the ACM 28(8) pp. 840-853 (August 1985).

D. Young, lterative Solution of Large Linear Sysiems, Academic Press, New York (1971).

L. A. Hageman and D. Young, Applied literative Methods, Academic Press, New York (1981).
R. S. Varga, Mairix lierative Analvsis, Prentice-Hall, Englewood Cliffs, New Jersey (1962).

B. L. Buzbee, D. Boley, and S. V. Parter, “‘Applications of Block Relaxation,”’ Proceedings of the
Fifth Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, Denver,

Colorado (Feb 1-2, 1979).

A. Brandt, ‘*Multilevel Adaptive Solutions to Boundary-value Problems,”” Mati. Comp. 31 pp. 333-

390 (1977).

J. E. Dendy, Jr., ‘‘Black Box Multigrid,”” J. Comput. Phys. 48 pp. 366-386 (1982).

W. Hackbusch, ‘‘Convergence of Multi-grid Iterations Applied to Difference Equations,”” Math. Comp.

34 pp. 425-440 (1980).

S. McCormick and J. Ruge, ‘‘Multigrid Methods for Variational Problems,’’ SIAM Journal of Numeri-

cal Analvsis 19 pp. 924-929 (1982).

D. Braess, ‘‘The Contraction Number of a Multigrid Method for Solving the Poisson Equation,”

Numer. Mat. 37 pp. 387-404 (1981).

45

'_l}.’-‘/l;

13. M. Ries, U. Tronenberg, and G. Winter, ‘‘A Note on MGR Methods,”" Linear Algebra Appl. 49 pp.

¢ 1-26 (1983).

o
7

h! 14. D. Kamowitz and S. V. Parter, ““On MGR[v] Muitigrid Methods,”’” Technical Report 575, University
»

. of Wisconsin-Madison Computer Sciences (January 1985).

:: 15. S. V. Parter, ““On an Estimate for the Three-Grid MGR Multigrid Method,”” Technical Report 610,
- University of Wisconsin-Madison Computer Sciences (August 1985).

16. D. Chazan and W. Miranker, ‘‘Chaotic Relaxation,”’ Linear Algebra Appl. 2 pp. 199-222 (1969).

*". 17. W. Miranker, ‘‘Parallel Methods for Solving Equations,’”” Mathematics and Computers in Simulation
} XX pp. 93-101 (1978).

. 18. A. Greenbaum, ‘A Multigrid Method for Multiprocessors,”” Technical Report UCRL 92211,
':: Lawrence Livermore National Laboratory (February 12, 1985).

-

T

<

~

.

&

.
rar

46

LIS Y
l' L

..

»

y N
PN

0 S AR Y

 Jal AN " . o
AL IR PRI IRIGTIIRC IR A ARV SIS VL QLR

A A R B AR e)

